APEX Fast Trigger and PID Capability

Eric Jensen The College of William & Mary Sergey Abrahamyan Yerevan Physics Institute

For the APEX Collaboration

Searching for a New Gauge Boson at JLab September 21, 2010

APEX Fast Trigger and PID Capability

- Components of HRS trigger/PID
- Scheme and performance of trigger
- Calibration and performance of PID
- Projected PID in other kinematics
- DAQ rates and dead time

Trigger Logic

- Electron Arm Trigger (T1)
 - Electron S2m
- Positron Arm Trigger (T3)
 - Positron S2m
- Coincidence Trigger (T4)
 - Electron S2m + Positron S2m
- "Golden" Coincidence Trigger (T6)
 - Electron S2m + Positron S2m + Positron Gas Cherenkov

Timing Alignment in Hardware

- Run at high rates, small timing gate is important
- Must align timing of the trigger detectors
 - S0 counter as a reference
 - Inserted 1–5 ns delay cables

Coincidence Timing

For proposed experiment: signal / background expected to be ~ 1/4 which improves in off-line to ~ 12/1

Triggers Performance

Observed dead time in the detector system is ~35 ns per single arm trigger Overall T6 ("golden" coincidence) dead time less than 8% up to electron arm detector rates of 5 MHz

Searching for a New Gauge Boson at JLab

Particle Identification Requirements and Reality

Using the Tantalum target: 2.2 GeV running

- Observed ratio of the rates $e^{-}/(\pi^{-}+\mu^{-}) \sim 50/1$
- Observed ratio of the rates $e^{+}/(\pi^{+} + \mu^{+}) \sim 1/1.5$
- PID should provide e/meson ratio in online sample of 10/1
- Positron arm needs a factor of 15 rejection of meson background
- Gas Cherenkov and lead glass calorimeters used for this purpose

Gas Cherenkov in Positron Arm (low rate)

2 μA on Pb Target Positron arm rate – 57 kHz

Gas Cherenkov in Positron Arm (high rate)

30 µA on Pb Target Positron arm rate – 765 kHz (close to maximum expected rate)

Lead Glass Particle ID in Positron Arm (high rate)

- + E_{PS} Energy deposition in 1st layer
- E_{SH} Energy deposition in 2nd layer
- \bullet p Particle momentum

Searching for a New Gauge Boson at JLab

Lead Glass Particle ID in Positron Arm (low rate)

Lead Glass Particle ID in Positron Arm (high rate)

30 µA on Pb Target Positron arm rate - 765 kHz $\pi^+ + \mu^+$ sample e⁺ sample Electron detection eff. 0.977500 Pion rejection eff. 0.985400 Events 300 $\pi^+ + \mu^+$ sample from GC e⁺ sample from GC Meson background rejected by 200 a factor of 60 100 This analysis didn't use 0.5 1.5 2 2.5 1 coordinate information E_{ps} + E_{sh} • E_{PS} – Energy deposition in 1st layer • E_{SH} – Energy deposition in 2nd layer • p – Particle momentum

Current Dependence of Particle Yield

Charge Normalized Particle Yield Corrected to Dead time:

 $\frac{kHz}{\mu A}$

Beam current	Electron trigger rate	Positron trigger rate
$2 \ \mu A \ on \ \mathbf{Pb}$	210.5	32.4
11 μA on Pb	251.8	39.0
28 μA on Pb	203.3	34.1
72 μA on Ta	2.50	0.46
143 μA on Ta	2.31	0.44

Searching for a New Gauge Boson at JLab

DAQ rates and dead time 2.2 GeV full luminosity

- A 20 ns coincidence gate would acquire a rate of 3.1 kHz
- DAQ dead time is 10% for 4 kHz

Time difference between Electron S2m and trigger

Concluding Remarks

- 10 ns ONLINE coincidence timing peak for e⁺e⁻ signal events
- Particle ID from the shower detector allows to reduce pion content in positron sample below 5%
- Gas Cherenkov allows further reduction of pion background by at least a factor of 10
- Rates and particle ID are stable up to high intensities

Test run results obtained to maximum rates projected for APEX data taking